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Differential games of pursuit and evasion are considered in a system described by a partial differential equation containing an 
elliptic operator and additively occurring control parameters. Spaces are introduced using generalized eigenvalues and generalized 
eigenfunctions of this operator which depend on a non-negative parameter. Four versions of the formulation of the game problems 
are studied which differ in the constraints imposed on the control of the players. In the case of two of the versions, sufficient 
conditions are presented such that, when these are satisfied, evasion is possible from all initial states (the pursuit problem for 
these games has been studied earlier). In the case of the third version, two infinite non-intersecting sets are distinguished such 
that the completion of a pursuit is possible from the points of one of them and evasion is possible from the points of the second 
set. In the case of the fourth version, the possibility of completing a pursuit from any initial position in an arbitrary small 
neighbourhood of zero is demonstrated. �9 2006 Elsevier Ltd. All rights reserved. 

Some of the results described below were presented in [1]. Arguments which were employed in the 
finite-dimensional case in [2] are used to solve the invasion problem. 

1. I N T R O D U C T I O N  

A differential operatorA of the form [3] 

n 

AZ = - E a i j (x  ) , x r= ~'~, 
i , j= l  

aij(x) = aji(x ) ~ Cl(~) (1.1) 

is considered in the space L2(f~), where f~ is a domain in R n bounded by a piecewise-smooth boundary, 
n > 1 and D is its closure. C2(f2) (the space of doubly continuous differentiable finite functions) is the 
domain of definition D(A) of the operator A. The coefficients aij(x) satisfy the following conditions: 
a constant ? > 0 exists such that, for all x e D and (~1, ~2 . . . . .  ~n) E R n, 

n n 

aij(x)~i~j>~ [ ~ ~2 (1.2) 
i , j = l  i = 1  

It can be shown that the operation 

(Z, Y)A = (Az ,  y ) ,  Z, y E ~2(~.-~) 
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satisfies all of the conditions of a scalar product [4], Hence, ~2(~--~) t u r n s  into a partial Hilbert space. 
On completing the space using the norm 

[[ZIIA (Az, Z) 1/2, o = Z �9 C2(~"~) 

we obtain the complete Hilbert space, which is called the energy space of the operatorA: we will denote 
this space by HA. 

It is well known that the operatorA (1.1) has a discrete spectrum or, more accurately, it has an infinite 
sequence 0 < ~.1 < L2 --- ... of generalized eigenvalues with the limit at infinity and a sequence 
of generalized eigenfunctions tpl, cp2 ... which is complete in L2(O) and HA. We shall assume that 
(q)i, (Pj) -~ 6ij, where ~ij is the Kronecker delta. 

Suppose r is an arbitrary non-negative number. We introduce the following spaces (henceforth 
summation is carried out from i = 1 to i = oo) 

r 2 
lr = {0~ = ( a l ,  a2  . . . .  ) : Z ~ , i ~ i  < e~}, H r ( ~ - ~ ) = I f � 9  a � 9  (1 .3)  

with the scalar products and norms 

(0~, ~)r ~" z~'rio~i~i ' 0~, ~ �9 lr, Ilall = Ilfll = (a, ~ ) )n  

( f ,  g)r -- (1~' ~)r, g = Z~JilPi 
(1.4) 

Note that H0(f~) = L2(~)  and Hr(~) C Hs(f~ ) for arbitrary s, r, 0 < s < r. 
We denote by (0, T; Hr(f~)) (L2(0, T; Hr(f~))) the space of continuous (square integrable, measurable) 

functions defined in the interval [0, T] with values in Hr(f~), where T is a certain positive constant. 

2. D E T E R M I N A T I O N  OF THE P O S S I B I L I T Y  OF EVASION AND THE 
P O S S I B I L I T Y  OF C O M P L E T I N G  A P U R S U I T  

We will consider the following conflict controlled distributed system (distributed differential game) 

dz(t__)) +Az(t) = - u ( t ) +  u(t), O < t < T  
dt 

u(.), v ( . ) � 9  Lz(O,T; Hr(~)), Z(0) = z (~ z ~~ �9 Hr+ l(f~) 

(2.1) 

The controls u(') and ~(.) of the first (pursuing) and the second (pursued) players are respectively 
assumed to satisfy one of the following systems of inequalities 

1) Ilu(t)ll<.p, Ilu(t)ll~a, O < t < r  

2) Ilu(.)ll~P, Ilv(.)ll-<~ 

3) Ilu(.)ll <_ p, [lv(t)ll---~, O < t < T  
4) Ilu(t)ll -< p, O<_t<_T, IIv(.)ll-<a 

(2.2) 

where p and c are non-negative constants. 
We shall subsequently call system (2.1), where the functions u(.) and v(.) satisfy one of the systems 

of inequalities 1, 2, 3 or 4, Game 1, 2, 3 or 4 respectively. We shall call the point z(~ the initial position 
of the point z (or of the games). 

We now formulate the determination of the possibility of evasion and the possibility of completing 
a pursuit from an initial position z (~ (henceforth z (~ , 0). 

Definition 1. In Game 1 (Game 2 and 3) evasion is possible from the initial position z (~ if, using 
any number T > 0 and an arbitrary control u(t), 0 < t < T which satisfies the condition [[u(t)[[ < 
P( [[ u(-) [I < p), it is possible to construct a control ~(t), 0 < t < T, such that the solution z(t), 0 _< t _< T 
of problem (2.1) does not vanish. In addition: 1) to find the vector of u(t), it is permitted to use 
z (~ (z (~ and z (~ u(s), t - 0 _< s < t, where 0 > 0 is an arbitrary constant and z (~ u(s), 0 < s < t, if 
0 _< t < 0; 2) the function ~o(t), 0 < t < r satisfied the inequality [1 ~(t)[I -< o (  l[ a~(.)[I < o; [[ ~(t)1[ < o). 
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Defini t ion 2. In Game 3 (Game 4) completion of a pursuit from an initial position z (~ is possible if a 
number T = T(z  (~ and a function u(v, t), v s R 1, 0 <_ t ___ T exist such that, for an arbitrary control 
v(t), 0 _< t < T which satisfies the inequality [[v(t)[[ _< ~([[v(')ll --- ~), the solution z(t) ,  0 <_ t <_ T of 
problem (2.1) vanishes for a certain t = t' s [0, T] (finds itself in an arbitrary r of zero, 
that is, ][z(t)II - ~ for a certain t = t' e [0, r]) .  In addition, the function u( t )  = u (v ( t ) ,  t) satisfies the 
inequality Ilu(')ll P(llu(t)ll --- p). 

The pursuit problem has been studied earlier in [5, 6] and, in particular, when p > ~, the possibility 
of completing a pursuit in Game 2 from an arbitrary initial position z (~ has been established [5]. 
Interesting classes of control problems are considered in [3, 7-10]. 

3. M A I N  R E S U L T S  

Theorem 1. If (~ > p, then evasion is possible from an arbitrary initial position z(~ in Game 1 
and 2. 

Theorem 2. 1. In the case of Game 3, two infinite non-intersecting sets of initial positions exist for 
arbitrary p > 0 and ~ > 0 such that completion of a pursuit is possible from the points of the first of 
them and evasion is possible from the points of the second of them. 

2. In Game 4, completion of a pursuit is possible from an arbitrary initial position z (~ for arbitrary 
p > 0 and ~ > 0. 

P r o o f  o f  Theorem 1. Suppose z (~ is an arbitrary initial position, T is an arbitrary positive number, 
and u(') and v(.) are controls which satisfy condition 1 (condition 2). We substitute these controls into 
the right-hand side of Eq. (2.1) and, in order to find an explicit form of the solution of the resulting 
problem z(t) ,  0 <_ t < T, we substitute the Fourier series 

(u( t ) ,  U(t), Z(t), Z O) = ~_~(ui(t), Vi(t),  zi(t) ,  zOi)~pi, ui( ') ,  Di('), Zi(" ) • L2[0, T] 

into system (2.1), where 

iiF(t)llz r 2 = ~ . i F i  ( t )  / 
0 

F =  ug l) 

and equate the corresponding Fourier coefficients. As a result, we obtain the infinite system of differential 
equations and initial conditions 

dz i ( t )  - ~.izi(t) wi ( t  ), 0 < t < T, zi(O) (0) = - - = z i  , i = 1 , 2 , .  �9 
dt ""  

wi ( t  ) = ui(t  ) -  l)i(t ) 
(3.1) 

It is obvious that the functions 

[ , i  1 Zi(t ) e-X~t o) k,s = Z - w w i ( s )ds  , O < t < T ,  i = 1,2 . . . .  
o 

(3.2) 

are a solution of system (3.1). It can be shown by direct calculations that the function 

z ( t )  = Zz i ( t )~Pi ,  O < t < T  

belongs to the space C(0, T; Hr+ 1(~-~)) and is a solution of problem (2.1) in the sense of  the theory of 
generalized functions [4]. 

Next, since z (~ r 0 according to the condition, then zi(O) ~ 0 for any i = k. Suppose, to be specific, 
that Z(k ~ > 0 (the case when z(~ ~ < 0 is treated in a similar way). Moreover, we assume that the inequalities 
1 are satisfied (Game 2 is considered next). 



888 N. Yu. Satimov and M. T. Tukhtasinov 

For all t ~ [0, T], we put vi(t) = O, i ,  k and a)k(t ) = {3).~/2 (it is clear that IIv(t)11 -< ~ in [0, T]). Since 
Ilu(t) II 2___ pc, then, obviously, lu~(t)l -< p~ /2 .  Hence,  

~ - r 1 2  ~ ^ Ok(t) -- Uk(t) ~ l ~ k  r12- OAk e O  

(We recall that ~ > p.) 
Consequently (see expression (3.2)), for all t ~ [0, T] 

--~k t ( 0 )  
Zk(t) ~ e zk (3.3) 

whence it follows that zk(t) ~ 0 in [0, T] or z~ ~ > 0. This means that z(t)  ~ 0 in [0, T] since, otherwise, 
a t' s [0, T] exists for which z(t') = O, zk(t') = O. 

Hence, evasion is possible in Game 1 from any initial position z (~ 
Now, suppose the inequalities 2 are satisfied. As above, we choose a non-zero Fourier coefficient z(k ~ 

in the expression z (~ and assume that z~ ~ > 0. 
It is clear that a number 5 s (0, T] exists such that, if, in expression (3.2), Vk(t) = 0 in [0, 5] and ul,(t), 

0 < t < T is a square integrable function which satisfies the inequality 

T 2 

fUZk(t)dt < P-.- 
o ~.'k 

then zk(t) ~ 0 in [0, 5]. Moreover, satisfaction of the inequalityzk(t) > z(~ in [0, 5] can also be achieved. 
We put 1)i(t ) = 0 for all i ~ k and t ~ (0, T], and a)k(t ) = uk(t - 5) for all t s [5, T]. 
On taking account of these facts and decreasing 5, if it is necessary, it is possible also to achieve 

satisfaction of the inequality zk(t) > Zk(0)/2 in the interval [5, T]. 
This means that, in the method proposed above, the inequality 

zk(t) > e-~'k'z~~ 0 < t < T (3.4) 

holds for all t ~ [0, T] from which it follows that, in Game 2, evasion is possible from any initial position 
z(O). 

Proof  o f  Theorem 2. 1. Suppose T is an arbitrary positive number and k is an arbitrary nature number. 
We will denote by Xk(To) the set of initial positions of the form z (~ = z(O)gk , where the coefficient 

z(k ~ and the number To satisfy the conditions 

0 < z~ ~ < (p - o ~ ~ 1 7 6  1)2 
T:~r+2 ' 0 < T o < T '  P - ~ o > 0  

0""k  

(3.5) 

We will now that, in Game 3, a pursuit can be completed from an arbitrary initial position which 
satisfies the condition 

z c~ ~ X = L.) L.) Xk(To) (3.6) 
Tok=l 

Indeed, suppose v(t), 0 < t ___ T is an arbitrary control of the second player, liar(t)l[ - c~. It is clear 
that 

T O 

[10(')1120 ~ f II o(t)ll2dt ~ •2To 
0 

Therefore, if we put "o(t) = u(t) + w(t)  in [0, To] and assume that [I w(-)II < P - ~ "/T-o, then it is clear 
that Jlu()llr0- p. 

Taking account of this remark, we now consider system (3.1). Since z (~ e X, then ~o) = 0 for all 
i ;a k, and z (~ satisfies conditions (3.5). 
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We put 

w i ( t ) - O  for all i r  wk( t )  = ~.kr ~ , O < t < T  o (3.7) 
e - 1  

Since wi(t ) = zl O) = 0 for all i ~ k, then, according to system (3.1), zi(t ) = 0 in [0, To] for each i r k. 
When i = k, from equality (3.2) we obtain: z~(To) = 0. This means that, with the above-mentioned method 
of choosing the functions u(.) and w(.), Game 3 is completed from an arbitrary initial position, which 
satisfies condition (3.6), after a time T(z  (~ <_ T. It can be shown that IIw( ') l l  --- o - ~ ;/-T0. 

We will now show that, in Game 3, evasion is possible from any initial position which satisfies the 
condition 

{ z (~ ~ Y k..) Yk, Yk z(O) : z~O)2 ze - 1 = = > p ~ (3 .8 )  
k=l 

In fact, it follows from condition (3.8) that z (~ s Y/for any i = k. Next, suppose u(t),  0 < t < T is an 
arbitrary control and 11 u(.) 11 < 9. We select the function v(t), 0 < t < T, which guarantees the possibility 
of evasion from a position z (~ in the following manner 

ui(t  ) =- O, i -%" k ,  V k ( t  ) i 1~1~;12 

When i = k, the solution of problem (3.1) then has the form 

Zk(t) e~.~, ~.~s O(e ~'k' - 1 ) = z~ ~ { k ( t ) -  e uk(s)ds  , 0 < t < T, {k ( t )  = 1 * , / 2  

o ~,k 

To be specific, suppose z(k ~ > 0. Then, by virtue of the Cauchy-Bunyakovskii inequality 

(3.9) 

(0) ~.ks ? ~ . - I  
Zk + { k ( t ) - I e  luk(s) las>z~ ~ + { k ( t ) - p  ~- 

0 

From this and from relations (3.8) and (4.9) for all t ~ [0, T], we obtain the inequality 

o(  1 - e -~'k') 
Zk(t) > ~1 + r12 

k 

(3.10) 

which means that, in Game 3, evasion is possible from an arbitrary initial position which satisfies condition 
(3.8). It is clear that II~(t)]l  - o. 

It is obvious that X and Y are infinite sets. Moreover, they do not intersect. Otherwise, it would be 
simultaneously possible to complete a pursuit and to evade an encounter from a certain initial position 
z ~ ~ X N Ywhich leads to a contradiction. The first part of the theorem is proved. 

2. Suppose e is an arbitrary positive number, z (~ is an arbitrary initial position, I[z (~ II > ~, v ( t )  is 
an arbitrary control of the second player and ]1 v(.)]] < o. 

We select the function u(t)  as follows (compare with expressions (3.7)): 

. ,o, iiz,O,ii 
Ui( t )  = A'iZi 0 < t < T l, i = 1, 2, T 1 = T(Z (0)) - 

~.iTi ' . . . . .  , 
e - 1  P 

Then, for arbitrary i, the solution of problem (3.1) has the form 

t 
- -  P ~,i S 

Zi(t ) = e-~"'[Zl 0) l (ui;  t) + l(1)i; t)], l (Fi;  t) = Je Fi(s )ds  

0 

(3.11) 
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Byvirtue of the choice of the function ui(t), 0 <_ t < T1, we obtain that z} ~ - I (u i ;  r l )  = 0. Consequently, 
zi(T1) = e-LiTl l (v i ;  rl).  

Two cases are possible: 
(1) IIz(T1) II - ~, (2) Ilz(T1) ll > ~. 
In case 1, Game 4 is completed from an initial position z ~ at the instant of time T1. 
In case 2, putting z ~ = z(T1) ,  we repeat the preceding arguments and obtain 

T 2 

IIz(T,)ll 
z i ( T I + T 2 )  = e Je l ) i ( T l + s ) d s ,  T 2 = T ( z (T1 )  ) = 

o P 

Here, two sub-cases are possible: 
(2a) IIz(rl + r2)ll -< ~, (2b) IIz(rl + r2)ll > ~. In sub-case 2a, Game 4 is completed at the instant 

of time 7"1 + T2. In sub-case 2b, putting z(~ = z(T1 + T2), we use the earlier arguments, and so forth. 
By arguing against this, it can be show that, up to the (k + 1)th step, where 

k = [ o 2 / ( 2 ~ 2 ) ]  + 1 

Game 4 will be completed from an initial position z (~ which guarantees a time of completion of the 
pursuit equal to p-l(llz(0)II + 02/(2~)) �9 

Note that, considerable use is made of the boundedness of the energy of the evader when proving 
the theorem (see formula (2.2)). 
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